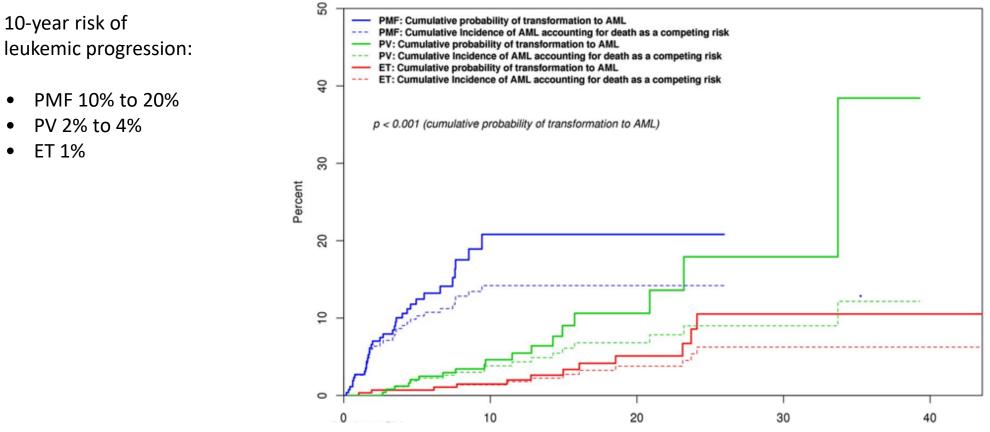


8° WORKSHOP IN EMATOLOGIA TRASLAZIONALE DELLA SOCIETÀ ITALIANA DI EMATOLOGIA SPERIMENTALE Firenze - Auditorium CTO - A.O.U. Careggi, 22-23 giugno 2023

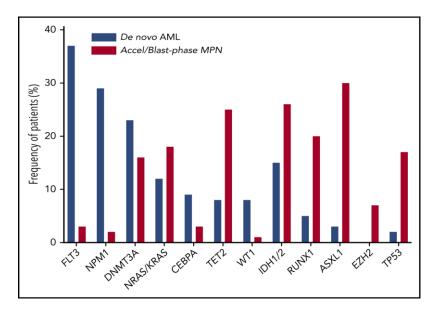
Meccanismi di progressione clonale e nuove prospettive terapeutiche per la leucemia mieloide acuta secondaria a NMP


Francesco Mannelli

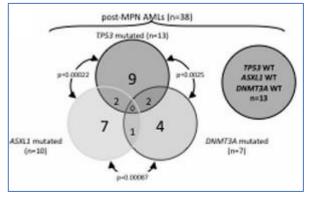
Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie					x		
Blueprint					х	х	
Novartis					х	х	

Progression to blast phase


- Blast phase is defined by the presence of <a>20% blasts in either peripheral blood or bone marrow
- > Accelerated phase is defined by 10-19% blasts and sometimes can precede BP; should be considered separately in prognostic data

Tefferi A, Guglielmelli P, et al. Blood. 2014;124(16):2507-2615


MPN blast phase molecular genetics

✓ Over-representation for *TP53*, *RUNX1*, *EZH2*, *ASXL1*, *IDH1/2* gene mutations

Dunbar, et al. Blood. 2020; 136:61-70

✓ Highly heterogeneous mutation profile at blast phase onset

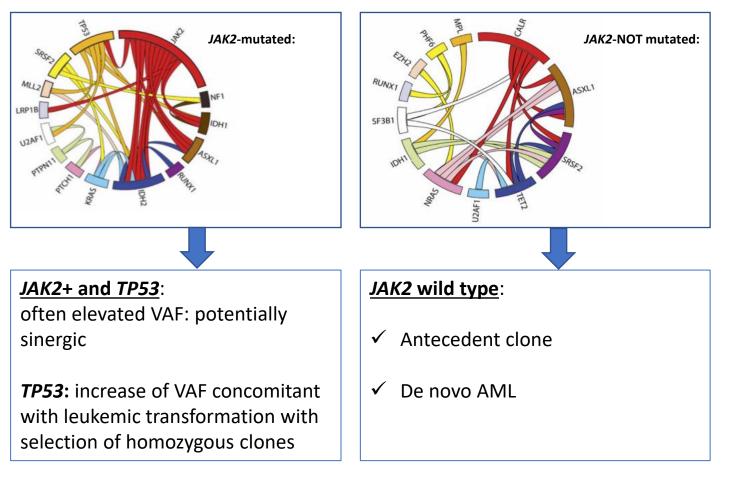
Courtier, et al. Haematologica. 2016; 102(1):e11-e14

Rare co-occurring mutations *DNMT3A - ASXL1 - TP53* suggests different mechanisms of transformation:

- ✓ TP53 o DNMT3A especially in AML post PV/ET
- ✓ *ASXL1* in post MF

✓ 2 main mutational *patterns* at transformation:

✓ A unifying model of clonal evolution can't be drawn; rather there are several patterns

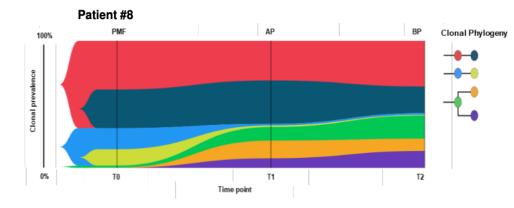

RNA

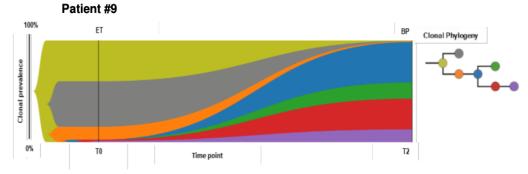
splicing

MPN

driver

Tumor

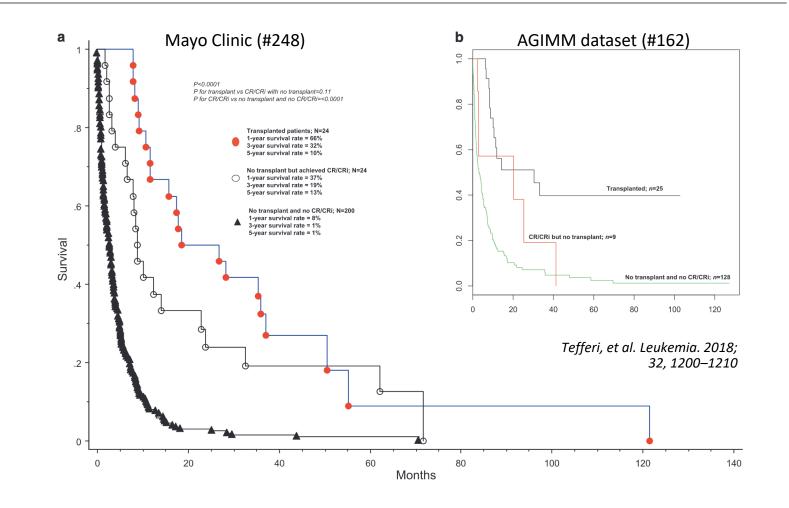


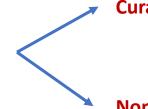


Progression to blast phase

- > Novel opportunities of insight from **single-cell sequencing**:
 - ✓ Detection of additional low-frequency variants (VAF < 2%) that were missed on bulk analysis
 - ✓ EZH2 frequently affected by CNVs in the leukemic clones

Subclones	T0 (%)	T1 (%)	T2 (%)
ASXL1_Het/EZH2_Het (a)/EZH2Het (b)/NRAS_Het (a)	37.2	30.03	35.97
ASXL1_Het/EZH2_Het (a)/EZH2Het (b)/NRAS_Het (a)/CALR_Het	31.27	36.01	20.96
ASXL1_Het/EZH2_Hom (b)/NRAS_Het (b)	16.44	1.19	1.32
ASXL1_Het/EZH2_Hom (b)/NRAS_Het (b)/CALR_Het	13.48	1.37	0.66
ASXL1_Het/KRAS_Het	1.35	10.24	17.49
ASXL1_Het/KRAS_Het/CALR_Het	0.27	13.65	10.07
ASXL1_Het/KRAS_Het/WT1_Het	0.27	7.51	13.53

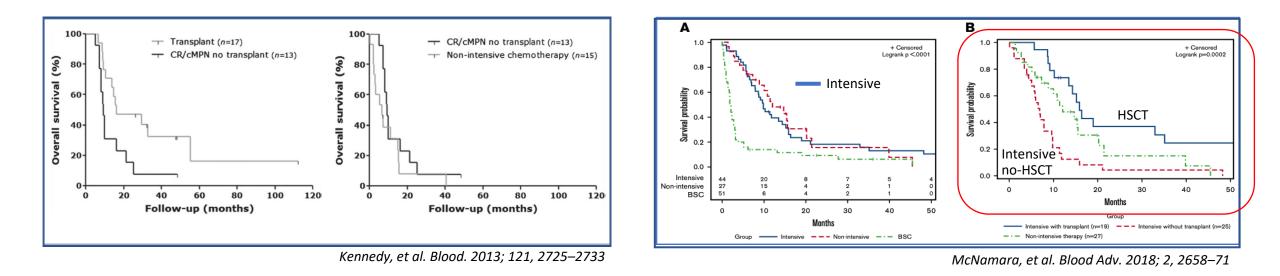

Subclones	T0 (%)	T2 (%)
TET2_Het	40.7	0.51
TET2_Het/CALR_Het	45.35	0.37
TET2_Het/TP53_Het	11.63	0.74
TET2_Het/TP53_Hom	0.1	39.89
TET2_Hom/TP53_Hom	0	15.89
TET2_Het/TP53_Hom/CALR_Het	1.16	31.32
TET2_Het/TP53_Hom/CALR_Hom	1.16	11.19


Prognosis at transformation

Median survival 3-6 months

Often advanced age: just a minority of pts are eligible for intensive treatment

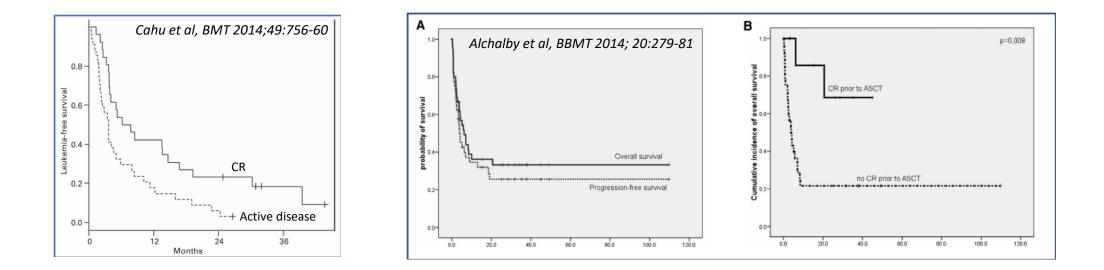
 Available data mainly retrospective and on small groups of pts


Curative intent: eligibility for allogeneic transplant

- > No established standard of care for MPN-BP
- > The only probability of long-term survival relies on allogeneic transplant

Reference	Induction chemotherapy					Allogeneic transplant						
	#	Туре	Response	TRM	OS, mo	#	Conditioning	Disease status	Donor	CIR @ 2y	NRM @ 2y	OS @ 2y
Mesa, Blood 2005	24	"3+7" 75% HDAC 13% MEC 13%	CR 0%	33%	3.9	-	-	-	-	-	-	-
Tam, Blood 2008	41	Ida-HDAC 54% "3+7" 15%	CR/CRi 46%	15%	NR	8	NR	CR 12.5% CRi 50% NR 37.5%	Sib 62.5% MUD 37.5	12.5%	12.5%	37.5%
Ciurea, Biol Blood Marrow Transpl 2010	-	-	-	-	-	14	MAC 36% RIC 64%	CR/CRi 43% NR 57%	Sib 57% MUD 43%	38%	29%	33%
Kennedy, Blood 2013	38	"3+7" 66% MEC 32%	CR 32% CRi 5% c-MPN 26% NR 24%	-	9.2	17	MAC 47% RIC 53%	CR/CRi 59% c-MPN 41%	Sib 70% MUD 30%	24%	47%	29%
Alchalby, Biol Blood Marrow Transpl 2014	-	-	-	-	-	38	MAC 53% RIC 47%	CR 23% NR 77%	Sib 45% MUD 55%	47%	28%	33%
Takagi S, Biol Blood Marrow Transpl 2016	-	-	-	-	-	39	MAC 38% RIC 62%	CR 18% NR 52% Untreated 30%	Sib 21% MUD 38% CB 41%	34%	34%	29%

Principles of Treatment – Eligibility for Allogeneic Transplant Program


- Response to chemotherapy:
 - very low according to standard criteria and short-term
 - beyond primary resistance, the clinical management is often complicated by underlying MPN (splenomegaly, long-lasting aplasia, high TRM)
- > Intensive chemotherapy does not improve survival compared to supportive care if not followed by allogeneic transplant

If NOT **eligible for allogeneic transplant,** the patient should be spared from toxicity of intensive chemotherapy and managed with clinical trials (if available), supportive/care or low-doses approaches

Eligibility for Allogeneic Transplant – Disease status at HSCT

- > Remission at HSCT tends to improve HSCT outcome but it occurs only in a minority of cases
- Retrospective data demonstrate high rate of engraftment and early achievement of full chimerism , also with reduced intensity conditioning
- > HSCT is able to induce long term **RFS in about 20%** of patients even when transplanted with active disease

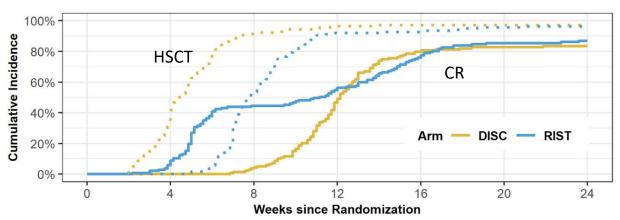
In **eligible patients**, HSCT is the main target; its delivery should **NOT** be subordinated to complete remission achievement

64th ASH Annual Meeting Abstracts

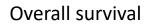
PLENARY SCIENTIFIC SESSION

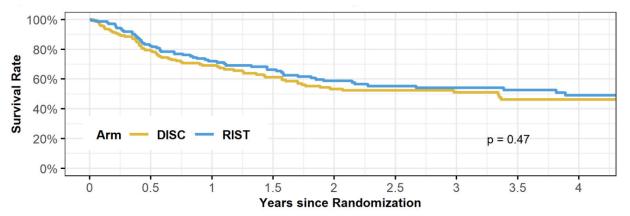
PLENARY ABSTRACTS

In Patients with Relapsed/Refractory AML Sequential Conditioning and Immediate Allogeneic Stem Cell Transplantation (allo-HCT) Results in Similar Overall and Leukemia-Free Survival Compared to Intensive Remission Induction Chemotherapy Followed By Allo-HCT: Results from the <u>Randomized Phase III ASAP Trial</u> Matthias Stelljes, Prof. Dr. MD¹, Jan Moritz Middeke, MD²,*, Gesine Bug, MD³,*, Eva-Maria Wagner, MD⁴,*, Lutz Peter Mueller, MD⁵,*, Schmid Christoph⁶,*, Stefan W. Krause, MD⁷,*, Wolfgang Bethge, MD⁸,*, Edgar Jost⁹,*, Uwe Platzbecker, MD¹⁰,*, Stefan Klein, MD¹¹, Jörg Schubert¹²,*, Judith Niederland¹³,*, Martin Kaufmann, MD¹⁴, Kerstin Schäfer-Eckart¹⁵,*, Markus Schaich, MD¹⁶,*, Henning Baldauf¹⁷,*, Friedrich Stölzel¹⁸,*, Cathleen Petzold, PhD¹⁷,*, Christoph Röllig, MD MSC¹⁹,*, Nael Alakel, MD²⁰,*, Björn Steffen, MD²¹,*, Beate Hauptrock²²,*, Christian Reicherts, MD²³,*, Christoph Schliemann, MD²⁴,*, Hubert Serve, MD²¹, Alexander H. Schmidt, MDPhD²⁵, Martin Bornhäuser, MD²⁶,*, Jan-Henrik Mikesch, PD, MD²⁴,*, Johannes Schetelig, MDMSc^{20,17}


Non-inferiority trial

Inclusion criteria:


281, unfavorable R/R AML, eligible for HSCT


1:1 randomization:

- HAM salvage therapy (RIST-arm)
- Watchful wait and sequential conditioning (DISC-arm)

Cumulative incidence of HSCT and CR

..

Bridge to transplantation

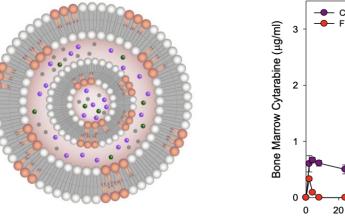
• No definite standard, generally based on **«3+7»/like induction** chemotherapy

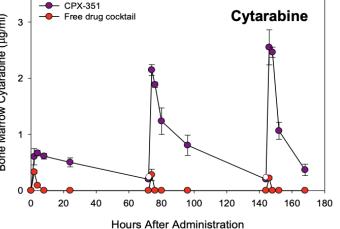
• Proposed comprehensive approaches (CHT + HSCT) embedding clofarabine and RIC conditioning

A multicenter trial of myeloablative clofarabine and busulfan conditioning for relapsed or primary induction failure AML not in remission at the time of allogeneic hematopoietic stem cell transplantation

J Magenau¹, P Westervelt², S Khaled^{3,4}, J McGuirk⁴, P Hari⁵, M Eapen⁵, PS Becker⁶, B Parkin¹, T Braun⁷, B Logan⁸, H Wang⁸, M Jagasia⁹, SD Rowley¹⁰, DDH Kim¹¹, T Schechter¹², N Frey¹³, B Scott⁶, T Churay¹, S Lieland¹, S Forman^{3,4} and S Mineishi¹⁴

Bone Marrow Transplantation (2016), 1–7

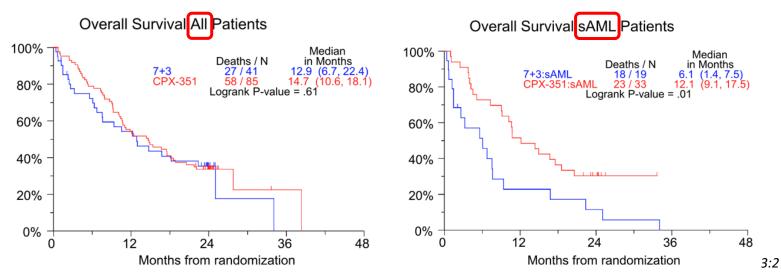

Magenau et al, BMT 2016; 52:59-65



Mohty et al, Haematologica 2017; 102(1):184-191

Bridge to transplantation – CPX-351

> Liposomal formulation of cytarabine and daunorubicin with fixed 5:1 molar ratio

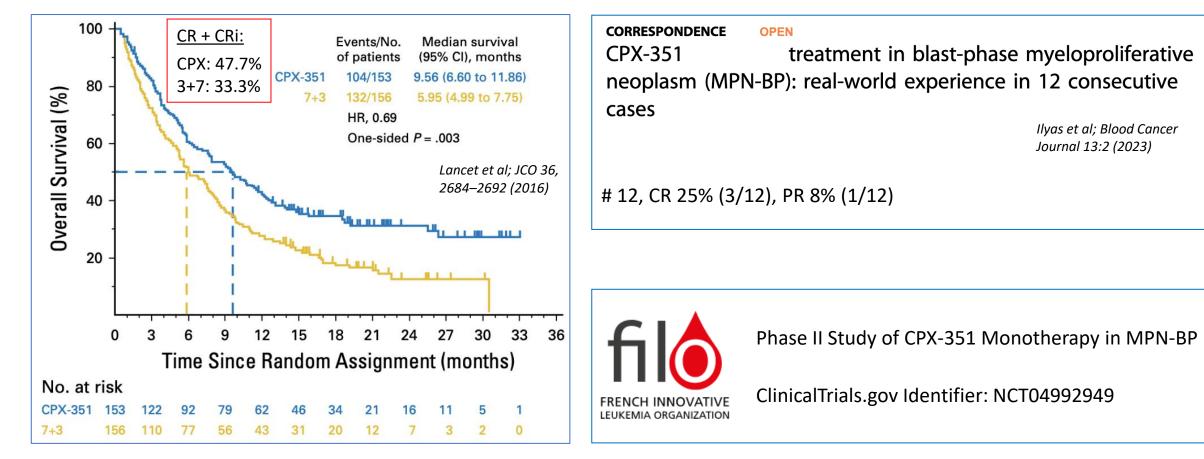

- Synergistic and prolonged effect
- BM accumulation
- Preferential uptake by leukemic cells independent from PgP expression

Phase 2 randomized trial

Inclusion criteria: # 127, age > 60 y

Primary endpoint (CR + CRi):

- CPX: 66.7% (CR 48.8%)
- 3+7: 51% (CR 48.8%)

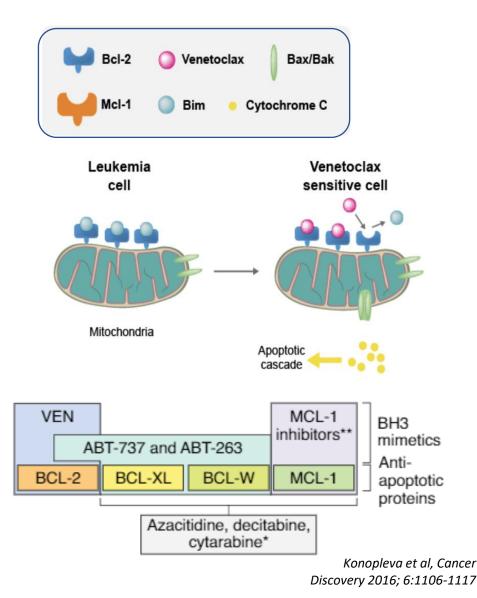

Lancet et al; Blood 123, 3239 (2014)

Bridge to transplantation – CPX-351

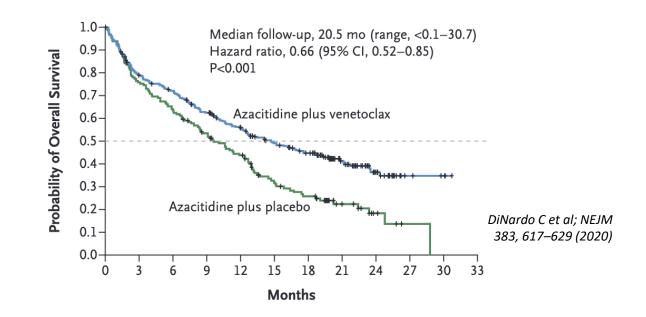
Phase 3 randomized trial

309 randomly assigned, age 60-75 y, stratified for type of secondary disease:

- \checkmark therapy-related
- ✓ post MDS (with/out prior HMA)
- ✓ CMML
- ✓ de novo with MDS-related cytogenetic abnormalities



 \geq


MPN-BP excluded from registrational trial

Non intensive treatment approach

Hypometilating agents plus venetoclax

> VIALE-A trial: phase 3 randomized, double-blind placebo-controlled trial

- Preclinical evidence of dependence on other antiapoptotic BCL2 family members (MCL1, BCL-XL)
- ✓ MPN-BP excluded from registrational trials

Non intensive treatment approach

Hypometilating agents plus venetoclax

✓ Low extra-hematological toxicity

✓ Potentially effective in selected subsets (i.e., *IDH1/2*)

Study	Design	Subset	Combination	Pt n	Outcomes
Gangat et al 2021	Retrospective	MPN-BP	НМА	32	CR/CRi 44%, OS 8 months
Tremblay et al 2020	Retrospective	MPN AP/BP	НМА	AP # 1, BP # 8	CR/CRi 33%, OS 4.2 months
Masarova et al 2021	Retrospective	MPN-BP	HMA, IC, cladribine, LDAC	31	ORR 50%
King et al 2022	Retrospective	MPN AP/BP	HMA, LDAC	AP # 6, BP # 21	ORR 52% in MPN-BP and 50% in MPN-AP

A Phase 2, prospective, multi-center intervention trial in patients with acute myeloid leukemia secondary to myeloproliferative neoplasms unfit for intensive chemotherapy investigating a treatment combination including decitabine and venetoclax

ENABLE (vENetoclax plus decitAbine treatment in Blastic phase of myeLoproliferative nEoplasms)

GIMEMA AML2420

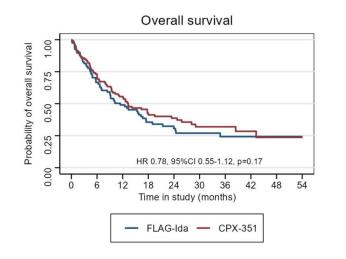
EudraCT number 2020-006114-20 Clinical Trial number NCT04763928

Gangat, et al. Am J Hematol 2021;96(7):781–9 Tremblay, et al. Leuk Res 2020;98:106456 Masarova, et al. Blood Adv 2021;5(8):2156–64 King, et al. Am J Hematol 2022;97(1):E7–e10

Perspectives:

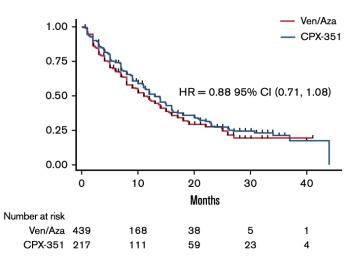
- ✓ Profound clonal responses
- ✓ Potential bridge to HSCT in fit pts

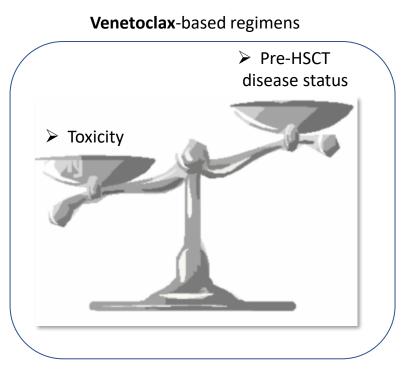
Caveat:


✓ Hematological toxicity

Bridge to transplantation - Summary

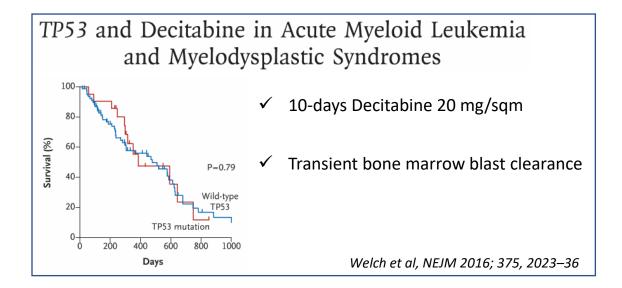
- ✓ Induction chemotherapy (including CPX-351)
- ✓ Venetoclax-based regimens
- ✓ **Frontline** transplant


UK NCRI AML19 Trial


- Adverse risk AML and MDS
- 20% of secondary AML
- R 1:1 FLAG-Ida vs CPX-351

US retrospective real-world trial

- # 656 AML pts
- 38% of secondary AML
- # 439 Ven-Aza; #217 CPX-351



Tefferi & Bacigalupo; AJH 98(4):553-5 (2023)

Matthews; Blood Adv 2022 (6);13:3997

Othman; Blood Adv 2023

- Hypometilating agents
 - Rationale for HMA in MPN-BP derived from the demonstrated efficacy in MDS and pauciblastic AML

✓ Complete responses generally scarce (about 10%) in blast phase

Study	Design	Subset	Treatment	Pt n	Outcomes
Andriani et al 2015	Retrospective	MPN-BP	AZA	19	OS 8 months
Badar et al 2015	Retrospective	MPN-BP	DEC	21	OS 7 months
Thepot et al 2010	Prospective	MPN-BP	AZA	26	ORR 38%; CR/CR1 12%

Andriani, et al. Leuk Res 2015;39(8):801–4 Badar, et al. Leuk Res 2015;39(9):950-6 Thepot, et al. Blood 2010;116(19):3735–42

Potential therapeutic option in unfit patients

Combination of RUXOLITINIB with chemotherapy or HMA

Chemotherapy	0	Devillier et al BJH 2016: # 5; combination of Rux 10 mg bid with 3+7; ORR 4/5 pts
Decitabine	0	Rampal et al Blood Adv 2018: Phase 1 (#14) dose escalation trial; Phase 2 (#15): Rux 25 mg bid; ORR 45%
Azacitidine	0	Drummond et al ASH 2020: Phase 1b trial (PHAZAR); #34 (20 evaluable for response); ORR 50%
Ven + Azacitidine	0	Systchenko et al BJH 2023: #5; ORR 80% (4/5), median OS 13.4 months

✓ Overall, limited single-center experiences and case reports

✓ Often patients evolved to BP upon ruxolitinib; feasible in combination with chemotherapy

> IDH1/2 inhibitors:

- Ivosidenib, Enasidenib in presence of *IDH1/2* mutations, respectively
 - ✓ Ongoing trials in combination with VEN +/- HMA

Conclusions

> In eligible patients, allogeneic HSCT is the only curative option in blastic phase of MPN

> Intensive chemotherapy does not improve survival compared to supportive care if not followed by allogeneic transplant

• unuseful in pts not eligible for HSCT

Bridge to transplant:

- Standard chemotherapy or CPX-351
- Frontline HSCT
- Venetoclax plus HMA could ameliorate outcome in some subsets and potentially represent the most suitable strategy

> In elderly/not eligible patients: non intensive approaches (HMA +/- Ven) or supportive care